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A method for deriving theoretical relations for thermodynamic properties of simple model fluids is
developed. The method uses mean collision properties to write the thermodynamics of a system in terms
of the equation of state of an equivalent system used as reference. The equivalent fluid is formed by par-
ticles interacting with a square-well (SW) potential whose properties are known accurately. The
equivalence to the SW fluid is made by means of mapping equations for the SW potential parameters.
Solution of the mapping equations at a few state points plus the use of simple parametric equations for
the SW potential parameters allows us to write the equation of state (EOS) of the fluid. The EOS derived
by this method illuminates the relation between thermodynamic properties of the fluid and relevant
features of the intermolecular potential, and gives reliable predictions of the thermodynamics including
the liquid-vapor equilibrium. This is tested by obtaining the EOS of the Lennard-Jones fluid and com-
paring it with very accurate empirical EOS available for this system. The EOS for fluids with a com-
monly used interaction potential (EXP6) are derived and used to discuss the liquid-vapor equilibria of
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these systems, with the particular attention to deviations from corresponding-state behavior.

PACS number(s): 61.20.—p, 05.70.Ce, 64.10.+h

L. INTRODUCTION

An important problem in the thermodynamics of fluids
is to derive analytical equations of state (EOS) for real
substances, i.e., to obtain explicit relations for the ther-
modynamic variables in terms of relevant molecular
features. Such relations allow ‘us to understand the
specific behavior of a real substance in terms of its molec-
ular features and, on practical terms, to use efficiently the
usually limited knowledge of the properties of a sub-
stance to predict their values in other states. As far as
this goal has not been fully attained, the practical need of
EOS has produced alternative and less ambitious ap-
proaches. The most direct is the fit of empirical functions
to experimental data of a specific fluid. These empirical
equations involve many parameters and require extensive
experimental data over wide ranges of pressure and tem-
perature as, for example, in the Benedict-Webb-Rubin
and Strobridge equations [1,2]. These empirical EOS are
specific to a substance, and their parameters lack of a
physical meaning. An alternative approach is provided
by semiempirical equations, e.g., those of Redlich-
Kwong, Peng-Robinson, or Soave [3-5]. These EOS are
widely used in engineering applications and require less
experimental information to determine the parameters.
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In many cases the semiempirical equations are
modifications of the van der Waals (vdW) equation. Both
empirical and semiempirical EOS share two problems:
there is no sure way to improve their accuracy, and their
parameters are not rigorously related to molecular prop-
erties. In contrast, approaches based on statistical
mechanics, although not as straightforward, provide a
physical understanding of the thermodynamics and are
potentially of very high accuracy.

The statistical-mechanical approach assumes a model
for the intermolecular potential u(r), and uses some
method (computer simulations, integral equations, per-
turbations, etc.) to calculate the thermodynamics either
directly or by means of the radial distribution function
g (r). After decades of development, these methods allow
us to determine g (7) and the thermodynamics with very
good accuracy for various models of the intermolecular
potential, and more refined techniques promise higher ac-
curacy and wider applicability. However, all these
methods, except for a few important but not very realistic
potentials, provide only numerical information for each
specific model of u (r) assumed. Here the question of
deriving analytic equations of state is still open. From
the theoretical viewpoint the aim is to relate explicitly the
thermodynamic properties of the fluid to relevant molec-
ular features of the potential u (r). In the practical side,
solution of this problem would extend the reliability and
predictive potential of EOS. In this paper we develop a
systematic procedure to obtain theoretical and analytic
equations of state from model potentials by using statisti-
cal mechanics.

Recently [6] we suggested a way to derive EOS for a
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simple model potential by means of collision concepts
[7,8] and perturbation theory. In the present work we
give a formal and rigorous basis for the theory and ex-
tend it to obtain accurate EOS for simple realistic sys-
tems. The basis ideas of the method are as follows. For a
fluid with intermolecular potential u(r) two collision
quantities are introduced: the mean diameter (s) and
the mean range (I ); both are functionals of u (r) and de-
pend on density p=N /V and temperature T. These col-
lision properties are then used to determine an equivalent
square-well (SW) system in such a way that the pressures
of both systems are equal. The collision parameters of
the equivalent SW fluid, a diameter ¢ and an attractive
range A, are determined at each temperature and density,
so that for any state (p,T) one finds an equivalent SW
system with parameters o(p,T) and A(p,T). The original
system in a given state is hence mapped into a particular
SW system, whose equation of state is very well known
[9-12]. As to the apparently privileged use of the SW sys-
tem, it can be shown that the thermodynamic mapping
can be done into reference systems different from the SW,
such as the Yukawa fluid. However, the use of other
equivalent fluids lays beyond the scope of this work.

This method is based on statistical mechanics and
kinetic theory, and is in principle exact, i.e., it provides
theoretical equations of state which can be systematically
improved in accuracy. It can also be extended to more
complex situations, like molecular fluids, mixtures and
inhomogeneous fluids; nevertheless, this paper is devoted
to pure fluids and spherically symmetric u (#). The aim
of the method is similar to those of other fluid theories
using different approaches [13-22]; some of these, like the
work of Aim and Nezbeda [13-15], although are less
rigorous, also use the idea of an equivalent system.

In this paper we formally develop a rigorous basis for
the theory and apply it to various systems and problems,
improving on approximations used in the preliminary
scheme. First, the concept of mapping between
equivalent thermodynamic systems is introduced and
used to develop and discuss a theory for the equation of
state. Second, the reliability of the applications is in-
creased by using accurate values for g(r) based on the
reference-hypernetted-chain (RHNC) integral equation in
its modern version [23-27]. An accurate treatment of
the structure extends the applicability of the theory to
very dense fluids, avoiding problems of multiple and non-
physical solutions. Third, we illustrate the application of
the theory in two cases: the well-known Lennard-Jones
fluid, for which many results are available for compar-
ison, and the family of EXP6 potential models for which
no analytical equations of state have been previously
developed.

Perhaps the main theoretical virtue of the method is
that the EOS parameters acquire a clear physical mean-
ing and hence illuminate the relation between the micro-
scopic and thermodynamic levels, e.g., in the understand-
ing of deviations from the principle of corresponding
states. The most important practical advantage of the
method proposed here is that reliable and analytical EOS
for model fluids are obtained from the knowledge of their
properties at a few state points.
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Section II addresses the basic concepts of the theory.
Section III discusses the main features of the theory, and
briefly reviews the techniques used to determine the prop-
erties of the reference SW fluid and of the systems of in-
terest. In Sec. IV the Lennard-Jones (LJ) case is present-
ed as an illustrative test, and EOS of EXP6 fluids are de-
rived. These EOS are used to predict the liquid-vapor
equilibrium of EXP6 fluids (the EXP6 potential is defined
below). Finally, the main conclusions of this work are
stated.

II. THEORY
A. Equivalent fluids and mapping equations

Let us consider a classical fluid system, denoted by YV,
whose particles interact through the pair potential u (#),
and another system ¥, to be called the reference system,
with interaction potential u (7). The potential u (r) is as-
sumed to be spherically symmetric and of realistic shape:
it has its minimum u (r,,,,)= —¢ at r=r,,, is repulsive for
r <r,, and attractive for longer distances. The reference
potential u,(r) is spherical and also includes repulsive
and attractive forces. By reference “‘system” we will real-
ly mean a family {¥,}] of systems whose potentials
uy(r;eg,a, &) all have the same functional dependence on
r through three parameters €,, a, and £, where g, is the
value of uy(r) at its minimum, and a and £ are required
for a full description of uy(r). For instance, if {W,] is the
SW family with interparticle potentials given by

o, r<ogw
Usw™ { €y Ogw=r=Aogw

0, r=Aogw >

then a=ogy is the hard-core diameter and £=MAogy is
the distance beyond which the potential vanishes. In this
case, the reference family {W¥,} of SW fluids is obtained
by varying the range A. .

We also assume that the properties of {W¥} are well
known, in particular the equation for its pressure
Py(p, T) or compressibility factor BP,/p=2Z(p,T), with
B=1/kT. Z, depends both on the state and on the pa-
rameters g, oa, and &, e, Zyp,T;[uy))
=Zy(p,T;eq,,&). Then we ask whether the properties
of W can be written in terms of the reference {W,}. (This
question is easily answered in the trivial case when ¥ and
Y, follow the principle of corresponding states, and per-
turbation theory shows how to relate both systems, but
only in an approximate way.)

In order to determine the system W, equivalent to W at
a given p and T, we impose that the pressures of ¥ and
¥, be equal, i.e.,

Z(p, T;[ul)=Zyp,T,ep,a, &) . (1)

This relation is an implicit equation for the reference
parameters €y, a, and £. In general, as long as {¥,} is
chosen conveniently, Eq. (1) will have many solutions at
the given p and T: there will be many combinations of
values for these parameters giving the same pressure in
both systems. In order to determine uniquely the
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equivalent system W, one needs to impose extra condi-
tions. We now show how this can be done by means of
kinetic arguments.

Using kinetic theory, the compressibility factor of W
may be written as [7,8]

Z=1+

3ir[(s)vR—(l)vA], @)
where v,=4(kT/7m)'/? is the mean relative velocity
and m is the mass of a particle. Equation (2) can be ob-
tained from the kinetic derivation of the virial theorem
by separating the contributions of repulsive and attrac-
tive forces to the total pressure. The quantities (s ) and
(1) are, respectively, the mean distances at which elastic
repulsive and attractive collisions occur. The frequencies
vg and v 4 are the number of repulsive and attractive col-
lisions per unit time, respectively. The main value of Eq.
(2) is the neat separation of repulsions and attractions:
the term (s)vy gives the effect of repulsive collisions,
proportional to the repulsive contribution to the pres-
sure, whereas (/)v, is proportional to the attractive
pressure. In equilibrium, these quantities are determined
from the differential collision frequency u(r) by the ex-
pressions [8]

<s)=if0rmsu(s)ds , 3)
(l)zifr:ly(l)dl , n
ve=[ "l , (s)
V= fr:,u(l)dl , 6)

where p(7), the number of collisions in (7,7 +dr) per unit
distance and unit time, is

w(r)=tmpv,riy(r)dlexp(—Bu(r))]/0r , (7

with the sign chosen so that u(r)=0 and y(r)
=g(r)exp(—u). Due to (7), in order to evaluate (s),
(1), vg, and v 4, one needs the radial distribution func-
tion g (») of W.

The compressibility factor of ¥, takes a form similar to
(2):

Zy=1+ 2 [ ()% — ()%, ] . ®)
3'VrO

Assuming the reference particles of the same mass m,

then v,,=v,. All the collision quantities in (8) depend on

the potential parameters €, a, and &.

We now propose the conditions necessary to determine

¥,. First, we take the depths of the potentials u (r) and
uy(r) to be equal:

£=¢g;, )

and, second, impose the equality between the repulsive
contributions of ¥ and ¥, to the pressure, and, separate-
ly, between the attractive contributions. Writing these
conditions in terms of the collision quantities,
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(s)vpg=(5)%% ,
(v, =)%Y .

Since g is simply fixed by (9), Egs. (10) constitute a set
of coupled equations for the two remaining unknowns «a
and {. Moreover, the equality of pressures, Eq. (1), is
recovered by adding (10a) to (10b) and using (2) and (8).
To illustrate with a concrete example, if ¥ is the
Lennard-Jones system with potential

(10a)
(10b)

upy(nN=4dey[(ory/r)?—(o/r)°],

and {W,] is the family of SW systems with variable range,
we look for the particular SW so that the repulsive and
attractive pressures are the same in both the LY and SW
fluids at a given p and 7. Provided that €; ;=¢,, Egs. (10)
will hold only when an adequate choice of ogw and A is
made.

In order to solve Eqgs. (10), one needs the functions g (7)
and g,(r) for the systems W and ¥,. Moreover, an itera-
tive procedure is required because the collision frequen-
cies and parameters of W, on the right-hand sides of (10),
depend in a nontrivial way on the potential parameters a
and &.

Equations (9) and (10) relate the system ¥, at a given p
and T, with one system of {¥,} identified by particular
values of gy, a, and £. Therefore, (9) and (10) define a
mapping W— {W¥,] between the system with potential
u (r) and a the reference systems with u (7). Solution of
the mapping equations (9) and (10) for g;, a, and £, must
be carried out at every p and T of interest. The mapping
here proposed is such that the repulsive and attractive
contributions to the pressure are kept the same in ¥, as
in W.

Let us briefly discuss why a full family {¥,} is neces-
sary for the mapping, i.e., why it is usually not enough to
consider a single constant reference system. In the latter
case, the potential parameters a and &, obtained from the
mapping equations, will be independent of p and T, so
that the pressures of ¥ and ¥, are equal at all state
points. This simple behavior occurs only when ¥ and ¥,
follow the principle of corresponding states, i.e., when
u (r) and uy(r) are conformal. But, in general, different
parameters a and £ are needed at different states. Take
the case of two similar fluids, such as the LJ fluid and the
SW fluid with ogw=o0;; and A=1.5. This similarity
would be exact only if Egs. (10) have the same solution
a=01;=0gw, and §=Aogw=1.50gw at all p and T. But
the actual solution of the mapping equations shows that
this is not true, for the LY and SW potentials are not con-
formal. It is difficult to establish a priori the particulars
of the dependence of a and £ on p and T, but it will mea-
sure the deviations from strict corresponding-state
behavior for the potentials u (7) and uy(r).

B. SW as reference fluid

In the rest of this paper we shall choose the square-well
system as the reference family {W¥,}. With this choice the
collision frequencies and parameters {s)5V and (I)SW
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are given by [7,10]

(s V=04, (11a)
(1)SV=Aogw , (11b)
vV =mpv,0dwvsw(Tsw)e’t (11c)
V¥ =mpv,(Aogw ) ysw(Aogw)e®—1) . (11d)

It is clear from these equations and (1) that knowledge
of yswlogw) and ygw(Aogy) is sufficient to determine all
the collision parameters and the pressure of the system.
For the SW reference (11) and using (9), the mapping
equations (10) become explicitly

0§w<p, T)}’sw(‘fsw)eﬁE

=frmds s3y(s)aex [=Buls)] , (12a)
0 as
A p, T)odw(p, Tysw(Aogy e —1)

=— [ "y 2L ZBuDL g

III. SOLUTION OF THE SW MAPPING

A. General features of the mapping method

The mapping equations (12) are solved by iteration
given a procedure to determine ygw(ogw), Ysw(Aogw),
and g (r) for the system of interest. We start by analyzing
the general features of the mapping method with a con-
crete example in view. Table I and Fig. 1 present the re-
sults of mapping the LJ fluid into the SW reference at
various states. The parameters a=ogy and £=Aogy are
shown for different states, e.g., the second row indicates
that a LY fluid at T*=kT /e;;=0.8 and p*=po;;=0.9
has the same repulsive and attractive pressures as a SW
fluid, at the same p and 7, with ogw=0.97742 and
A=1.69712. In SW reduced units, pdyw=po iy =0.8404.

TABLE 1. Square-well collision parameters of the Lennard-
Jones fluid from the RHNC theory.

T* PU%J Osw/0L; A PUgw
0.80 0.00 1.02053 1.40552 0.0000
0.80 0.90 0.97742 1.697 12 0.8404
1.50 0.00 1.002 14 1.48704 0.0000
1.50 0.30 1.050 45 1.504 73 0.3477
1.50 0.60 1.006 97 1.65923 0.6126
1.50 0.90 0.97036 1.716 18 0.8223
2.00 0.00 0.990 65 1.51934 0.0000
2.00 0.30 1.01920 1.544 58 0.3176
2.00 0.60 0.993 89 1.67159 0.5891
2.00 0.90 0.964 15 1.726 14 0.8066
10.0 0.00 0.91625 1.682 90 0.0000
10.0 0.30 0.917 69 1.694 96 0.2319
10.0 0.60 091130 1.77028 0.5468
10.0 0.90 0.900 17 1.809 88 0.6565
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FIG. 1. Equivalent SW diameter ogw (solid lines) and range A
(dashed lines) of the Lennard-Jones fluid as a function of densi-
ty. The circles show direct results from the mapping equations
and the RHNC equation. The lines labeled by the temperature
T*=kT /& stand for the parametric equations (19).

As expected, both o gy and A depend on p and T.

The mapping method requires us to evaluate g(7) of
both systems ¥ and W, (the SW in our case). Calculation
of ygw(ogw) and ygw(Aogy) is not a problem. First, as
shown below, from the Helmholtz free-energy function of
the SW system Agw(p,T,A), one can immediately derive
all the thermodynamic and structural information re-
quired by the mapping equations. Second, accurate
knowledge of Agw(p,T,A) is currently available. On the
other hand, g(r) can be calculated either by
simulations—Monte Carlo (MC) or molecular
dynamics—or by solving the Ornstein-Zernike (OZ)
equation with the reference-hypernetted-chain (RHNC)
closure. The latter is more economical and has been
shown to provide very accurate g (r) of spherical poten-
tials [27-29]. Hence, at least for spherically symmetric
u (r), solution of the mapping equations is straightfor-
ward. Now, since the pressure may be evaluated directly
once g(r) is known, we must discuss the theoretical and
practical advantages of the mapping method over direct
integration [30].

Direct integration of g(r) determines Z(p,T) only at
the stages where g(r) is known. As an example of the
direct approach to EOS we can mention the work of
Johnson, Zollweg, and Gubbins [31], who performed
simulations for the LJ system and obtained Z in about
200 states. An empirical EOS (Benedict-Webb-Rubin)
containing 35 parameters was then fitted by the least
squares method to their results. This Johnson-Zollweg-
Gubbins (JZG) EOS is the most accurate thus far avail-
able for the LJ fluid. In any direct method like this one
needs to perform simulations or solve the RHNC integral
equation in a large number of states, and further, the
EOS parameters lack any physical meaning.
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In the mapping method, the EOS parameters are the
collision quantities ogy and A which have physical mean-
ing. Hence, when applying the mapping method to
different realistic potentials—such as the n /12 LJ, the
EXP6, or the spherical Kihara families—the behavior of
ogw and A with p and T is very similar to that shown in
Fig. 1 (see Figs. 5 and 6, which correspond to two
different EXP6 fluids). In fact, the ratio of ogw(p,T) of
one system to ogw(p, T') of another system, and the ratio
of the corresponding A’s, measure the deviations from
corresponding-state behavior. These ratios play the role
of the so-called “shape factors” used in empirical general-
izations of the principle of corresponding states [32].
Hence the mapping method gives physical insight into
differences in thermodynamic behavior.

Further, the smooth and general behavior of the col-
lision parameters allow us to propose general parametric
forms for ogyw and A. The parameters in these forms are
obtained directly, without a least squares method, by
solving the mapping equations at only a few state points.
The parametric expressions are then just substituted into
the well-known Zgy (p, T) to obtain an analytical expres-
sion for the pressure. This means significant savings in
computing time over the direct method involving empiri-
cal EOS. These features will be developed and used in
Sec. III B.

B. Solution of the mapping equations

Solution of the mapping (12) requires the values of
Yswlosw) and ygw(Aogw). To write Z from Eq. (1), one
also needs an equation of state for the SW system Zgy,.
An accurate equation for the free energy of the SW sys-
tem, Agw(p,T,A), has recently been derived [11,12] and
is described in Appendix B. Using this equation,

st:p(aasw/ap) ) (13)

where agw =B Agw /N. Moreover, ygw(Aogy) is given by
the exact relation [33]

dagy
oA

1
127

ysw()\-asw)}\z(eﬁs_l):_ ’ (14)

T,p

where 17=7Tpa§w/6 is the SW packing fraction. Finally,
ysw(ogw) is found by requiring consistency between Zgy
obtained from the free energy, Eq. (13), and that calculat-
ed from Clausius’s virial theorem (8):

Zsw =1+4n[ysw(oswle™ —Vysw(Aogw)e™—1)],
which leads to

Yswlosw)

=e P Zsw— 1) /4n+Lysw(Aosw)e=1)], (15

and whose right-hand side is given by (13) and (14). It is
clear from Egs. (13)—(15) that all the information re-
quired to perform the mapping into the SW system is
contained in the free energy function Agw(p,T,A).

The function g (#) for u (#) has to be calculated once at
each state point, because on iteration only the SW param-
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eters vary. This was done by solving the OZ equation
hir)—c(t)=p [drh(t)c([r—r]), (16)
with the RHNC closure
g(r)=exp[ —Bu(r)+h(r)—c(r)+Byg(r;dys)] .
(17)

This closure requires the bridge function B yg(r,dyg) of
hard spheres, which was taken in the parametric form
proposed by Malijevsky and Labik [26]. The hard-sphere
diameter dyg used in (17) is obtained from the equation
proposed by Lado [24]:

fd3" dysl8(r)—gus(r;dys)][0Bys(r;dys) /3dys ]=0
(18)

together with the Verlet-Weis method to compute g g (7).
Equations (16), (17), and (18) were solved numerically by
the procedure proposed by Labik, Malijeksky, and Vonka
[28].

C. General form of the collision parameters

The values of ogyw and A obtainec from (12) are used to
determine two parametric expressions here proposed for
osw(p,T) and A(p,T). The behavior of ogw(p,T) and
Alp,T) shown in Fig. 1 is quite general for different po-
tentials, and can be adequately represented by

cotejexp[—c,(p* — ;)]
1+C3p*

*3
Osw™—

(19a)

and

A=ay+a;tanh[a,(p* —®,)] , (19b)

where ©, and o, are constants. At constant 7, (19a) de-
pends on four parameters, c¢;, and (19b) on three, ;.
These parameters are obtained algebraically, without any
least squares fitting, from the values of ogy and A at only
three densities—plus their low-density values which do
not involve g (#); see Appendix A for details. Once c; and
a; are determined at each of four selected temperatures,
their T dependence is represented by polynomials in T or
1/T. The lines in Fig. 1 show o3y and A given by (19) for
the LJ fluid. The agreement between Eqgs. (19) and the
values calculated directly from the mapping equations is
very good. The required EOS are finally obtained by sub-
stitution of (19) for oy and A in EOS of a variable-width
SW fluid,

Z(p, T)=Zsw(podw(p, T),kT /e,Mp,T)) . (20)

In this theory, Zgyw is a universal component of EOS,
and for a particular fluid one needs the parameters in
Eqgs. (19). The procedure requires calculating g(r) only
at 12 states. Solving for ogy and A at more states and us-
ing improved parametric equations can systematically in-
crease the accuracy of the resulting EOS.
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IV. RESULTS AND DISCUSSION

The mapping equations have been solved for the LJ
and two EXP6 potentials. Besides the 12 state points re-
quired for the parametrization in Eq. (19), other one-
phase states were explored. For the potentials tested,
unique solutions of the mapping equations were found in
the whole one-phase range up to high densities p*=1.
In, or near, the liquid-vapor coexistence the RHNC pro-
cedure breaks down and the right-hand side of the map-
ping Eqgs. (12) cannot be evaluated.

A. Test with the Lennard-Jones system

The well-known LJ fluid was used to test the mapping
method. First, we discuss the behavior of ogy and A
shown in Fig. 1. The values of the two-phase region are
generated by Eqgs. (19), and are interpolations of the low-
and high-density solutions of the mapping equations.
The diameter ogy depends weakly on p at constant 7, ex-
cept close to or below T,, but depends strongly on T at
constant p. At high T, ogy decreases almost monotoni-
cally with p and in all cases decreases with increasing T.
These tendencies follow the expected behavior of the
mean collision diameter, and are due to the softness of
the core of u (r), as has been shown for purely repulsive
systems [34]. The more familiar diameters of the Weeks-
Chandler-Andersen (WCA) perturbation theory have a
similar behavior [35]. The attractive range A depends
strongly on p and T due to the softness of the attractive
well. At a given temperature, A is almost constant at low
densities, and increases at high densities.

The theoretical equations of state (TEOS) are given by
(20), with the SW EOS described in Appendix B, together
with ogw and A given by (19). The constants determining
the T dependence of these parameters (see Appendix A)
are shown in Table II for the LJ fluid. The resulting Z;;
is plotted in Fig. 2 against pf;=po3;, and compared with
MC results from the literature [36]. The agreement is
very good over a wide range of T and p, and not only at
the few states where the mapping equations were solved,
but at other states as well.

A more severe test is to analyze the liquid-vapor (LV)
equilibrium predicted by the TEOS. Figure 3(a) shows
the coexistence densities, and Fig. 3(b) the vapor pres-
sures. Figure 3(a) also includes the densities obtained
from the accurate JZG EOS [31]. The TEOS give a good
prediction of the coexistence curve except in the proximi-
ty of the critical point. The JZG equation provides a
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FIG. 2. Compressibility factor Z of the Lennard-Jones fluid
from the equation of state of this work (solid lines) at values of

T* as labeled. The circles are Monte Carlo results from Ref.
[31].

much better description of the LV equilibrium, which is
not surprising since these EOS are forced to fit the criti-
cal point determined by Gibbs ensemble simulation of the
LJ system and uses information from about 200 states,
whereas in this work we used information at only 12
states. Figure 3(b) compares the vapor pressures of the
LJ fluid predicted by the EOS of this work with the simu-
lation results of Lofti, Vrabec, and Fischer [37]. The
agreement is seen to be very good. Analysis of the LJ
case shows that the mapping method is satisfactory to ob-
tain analytical EOS of simple fluids.

The behavior of o gy and A along the coexistence curve
is shown in Fig. 4. At any T <T, the diameter ogy is
smaller in the liquid than in the vapor (see the discussion
above). The attractive range is rather constant for
T/T,.<0.9: A=1.43 in the gas phase and A=1.7 in the
liquid. It is clear that an exact equivalence between the
LJ and SW systems requires quite different diameters o gy
and ranges A for the liquid and for the vapor branches,
except in the proximity of the critical point. The same
behavior was found with a purely thermodynamic pro-
cedure based on generalized corresponding states [38].

TABLE II. Constants of the parametric approximations to o &y and A for the Lennard-Jones fluid.

n BOn COn Cln C}n }"On 23 QAop

0 1.18093 0.92098 0.117413  0.034 485 1.73972 0.055907 8 1.41648
1 —0.15269 —0.0266292 —0.336663 —0.108758 —0.717208 0.107774 14.33

2 0.0307289 2.06172X10~* 1.21582 0.0313718  0.651711 —0.0285815 —44.0208
3 —0.0031477 —0.518 668 —0.231932 71.9177
4 1.20627X107* —33.4023
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B. EOS for the EXP6 fluids

We turn now to systems for which no explicit EOS are
available. An effective u (r) commonly used for modeling
real fluids is the EXP6 potential given by

upx(r)= %exp[y(l—r/rm)]—(r/rm 6t

&
1—6/y
1)

Varying y in (21) changes the repulsive part of u (r):
the potential core becomes softer for a smaller y. Here
we consider the cases ¥y =12 and 14 which have been used

0.6 T S N S B

00 02 04 06 08 10
pULJ

L

—_ 6 L 1 L | 1 i

0.7 08 09 10 1.1 12 13 14
/T

FIG. 3. (a) Coexistence liquid-vapor densities of the LJ fluid
as obtained from the equation of state of this work (solid line).
The dashed line is the coexistence curve from the JZG equation
of state Ref. [32]. (b) Vapor pressures of the LJ fluid. The solid
line is obtained from the equation of state of this work, and the
circles are Monte Carlo results from Ref. [37].
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FIG. 4. Equivalent SW diameters ogsy (solid lines) and ranges
A (dashed lines) for the LJ fluid at saturated liquid and vapor
densities.

TABLE III. Square-well collision parameters of the EXP6
fluid with ¥ =12 and 14 from the RHNC theory.

T* pa} osw/0x A PISw
y=12
1.00 0.005 1.020 36 1.462 30 0.0053
1.00 0.900 1.97574 1.710 34 0.8361
1.50 0.005 1.002 70 . 1.51695 0.0050
1.50 0.300 1.055 56 1.52901 0.3528
1.50 0.600 1.001 68 1.68005 0.6030
1.50 0.900 0.966 05 1.73002 0.8114
2.00 0.005 0.988 65 1.55375 0.0048
2.00 0.300 1.01578 1.576 19 0.3144
2.00 0.600 0.986 74 1.696 08 0.5764
2.00 0.900 0.95624 1.746 02 0.7869
10.0 0.005 0.87058 1.807 14 0.0033
10.0 0.300 0.87232 1.83109 0.1991
10.0 0.600 0.866 12 1.869 40 0.3898
10.0 0.900 0.854 47 1.897 99 0.5615
y=14
1.00 0.005 1.01891 1.44006 0.0053
1.00 0.900 0.97601 1.696 96 0.8368
1.50 0.005 1.002 27 1.49194 0.0050
1.50 0.300 1.049 47 1.50333 0.3468
1.50 0.600 1.005 77 1.652 69 0.6104
1.50 0.900 0.968 13 1.712 66 0.8167
2.00 0.005 0.989 56 1.52569 0.0048
2.00 0.300 1.015 69 1.54593 0.3143
2.00 0.600 0.99075 1.667 37 0.5835
2.00 0.900 0.95957 1.72571 0.7952
10.0 0.005 0.887 15 1.743 17 0.0035
10.0 0.300 0.88891 1.766 69 0.2107
10.0 0.600 0.882 86 1.81106 0.4129
10.0 0.900 0.871 88 1.846 59 0.5965
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FIG. 5. Equivalent SW diameters oy (solid lines) and ranges
A (dashed lines) for the EXP6 fluid with ¥ =12 at values of T*
as labeled, except for those at T*=1.5 which carry no labels.

for modeling molecular fluids. These two potentials are
quite similar, and to be able to discriminate their small
differences puts a strong demand on the theory.

Solutions of the mapping equations for the two EXP6
potentials are shown in Table III. The mapping equa-
tions were solved with the RHNC integral equation for
the EXP6 fluid and with the EOS in Appendix B for the
SW properties. Figures 5 and 6 show ogy and A in terms
p, =pos [where upyx(o,)=0] and T*=kT /e, for y =12
and 14, respectively. ogw and A with p and T follow the
same trends as for the LJ fluid, and so Egs. (19) also yield
good results. The only change is in a somewhat different
temperature dependence of the parameters ¢; and a; (see
Appendix A).

TEOS of the two EXP6 fluids are obtained by using the
constants for o gy and A shown in Table IV. There are no
simulations for these fluids to compare with the predic-
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FIG. 6. Equivalent SW diameters ogyw and range A for the
EXP6 fluid with y =14. Symbols as in Fig. 5.

tions of this theory, but from the analysis of the LJ case
one can safely infer that these EOS provide a good esti-
mate of the EXP6 thermodynamic properties.

The critical properties of the EXP6 fluids, obtained
from their TEOS, are given in Table V. The critical tem-
perature is higher for ¥ =12 than for y =14 because the
former potential has a wider attractive well. The effect of
v on the critical and saturated vapor densities is not im-
portant. Figure 7(a) shows the saturated liquid densities,
and Fig. 7(b) the vapor pressures of the two EXP6 fluids.
In both, variables are reduced with the critical values of
Table V, and allow us to examine the deviations from
corresponding-state behavior. The wider potential well
of the ¥y =12 fluid produces larger SW ranges A; see Table
III. Hence, as shown in Fig. 7, the y =12 fluid has a
slightly broader orthobaric. The vapor pressure curve of
the y =12 fluid has a higher slope than for the y =14

TABLE IV. Constants of the parametric approximations of oy and A for the EXP6 fluid with
y=12 and 14.
n BOn COn Cln C}n )"On Ay, QArp
y=12
0 106515 0.602 199 0.125294 0.0477398 1.465 14 0.053 495 1.797 49
1 0.141327 0.964508 —0.279393 —0.133382 —0.126 524 0.0984258 7.21238
2 —1.17829 1.071 44 0.057 275 —0.027 122 —1.43809
3 0.538141 —0.488 146
y=14
0 1.060 60 0.651 344 0.127 667 0.047 052 1.42728 0.058 3579 2.448 58
1 0.131911 0.623341 —0.206141 —0.166 862 —0.108 485 0.101 08 8.93618
2 —0.576 551 0.866172 0.070248 7 —0.0341626 —4.09005
3 0.188139 —0.305786




2334

TABLE V. Critical constants of EXP6 fluids with y =12 and
14 from their theoretical equations of state.

Y T* (po¥). (Poi /e).
12 1.4823 0.3105 0.1784
14 1.3621 0.3142 0.1745

fluid. This effect on the coexistence properties is sys-
tematic and coincides with that found by Fischer et al.
[39] for the Mie-6 potentiai:

6/(n—6)
ne n
u(r)= — (o/r)"—(c/r)®
n—6 1|6 [ "1
25 — .
o (a)
2.0 r \\
p/loc r }r
i’ ;
1.5 F
:
1.0 — ! L _
0.6 0.7 0.8 ) 0.9 1.0 1.1
T/T.
O —
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FIG. 7. Effect of ¥ on the liquid-vapor equilibrium of EXP6
fluids with ¥ =14 (solid lines) and 12 (dashed lines) as obtained
in this work: (a) saturated liquid densities, and (b) vapor pres-
sures.
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where the softness of the core depends on the parameter
n.

V. CONCLUSIONS

A method for deriving theoretical EOS of spherical po-
tentials has been developed. We have shown that a given
fluid can be mapped into a three-parameter reference sys-
tem. A family of variable-width SW fluids was found
suitable as reference, although other hard-core systems
could be used. The known properties of SW fluids, embo-
died in the SW EOS proposed elsewhere [11,12], are
sufficient and accurate enough to solve the mapping equa-
tions. When the structure of the fluid of interest is calcu-
lated accurately, the mapping equations have unique
solutions at all one-phase state points, including the very
dense liquid. No evidence of multiple solutions was
found, which appeared when a more approximate theory
was used.

TEOS of fluids are obtained by solving the mapping
equations at a few state points (12 in the cases here con-
sidered). The EOS parameters ogw(p,T) and Alp,T)
have a general behavior with p and 7, and can be
represented by parametric functions determined at the
few selected state points. These parametric functions
plus the SW EOS constitute the TEOS of the fluid. Since
EOS are explicit in all variables, they furnish an ex-
pedient way for analyzing any thermodynamic property
of interest. Further, since ogw(p,T) and A(p,T) have a
kinetic meaning, they contain important information
about the system, which.allows us to understand the
effect of given features of the potential such as, e.g., con-
cern deviations from corresponding-state behavior.

The mapping of the LJ fluid into the SW system was
used to test the approach. Considering that information
of only 12 states was used, the TEOS derived give good
predictions of the pressure and LV equilibrium of the LJ
fluid.

The mapping method was applied to fluids with the
EXP6 potential with softness parameters ¥y =12 and 14.
EOS were derived for each system, and the LV equilibria
determined. These EOS should have an accuracy similar
to the LY EOS, and can be used confidently to predict the
thermodynamics of these fluids. Due to its wider poten-
tial well, the fluid with the softer core, y =12, has a
higher critical temperature and a broader two-phase re-
gion.

Extension of this method to fluids with nonspherical
potentials and to mixtures is possible and currently being
developed. Applications of the mapping method can be
easily conceived. If one needs a quick estimate of the
EOS and the LV envelope of a fluid model, the whole
procedure of solving the mapping equations and obtain-
ing the constants in the parametric equations takes less
than a day of work (provided that the software is avail-
able). One can also use information obtained from a few
simulations to derive EOS in a broad range of tempera-
tures and densities, and to obtain a reasonable estimate of
the LV equilibrium and other properties. This is possible
because the mapping methodology exploits the
knowledge of the EOS of the reference system to build
the TEOS of the unknown fluid.
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APPENDIX A: PARAMETRIZATION
OF THE SW PARAMETERS

1. Determination at constant temperature

The density dependence of the SW diameters is given
by Eq. (19a) with @,=0.30, o* =04y /0y, p* =po};, and
oy=oy; or o,. The four parameters c¢; are determined
by solving (19a) from the values b, b,, b,, and b, of
b(p*)=0**p*), at the four densities p* =0, 0.3, 0.6, and
0.9, respectively. The explicit solution gives, first,

C3=(b0/b2_1)/0.6, (Al)

and then one solves the cubic equation for the auxiliary
variable &:

b3(1+0.9¢5)—b,

b, (14+0.3¢c3)—by

EE+E+1)=

Once § is determined, the other parameters are given by
by—b,(14+0.3c¢c;)

Coz l—é‘ ) (Az)
by(1+0.3¢c;)—b
¢ =— 1_§3 ° (A3)

¢, =—(In§)/0.09 . (A4)

The density dependence of the SW ranges is given by
Eq. (19b) with w,=0.52 (LJ) and w,=0.50 (EXP6). The
parameters @, a, and a, are obtained from (19b), and
the values Ay, A, and A5 of A(p*) at p*=0, 0.3, and 0.9,
respectively. The solution is

aoz-;—(k:;""}\.o) ) (AS)

alz%(}\q_}\zo) , (A6)
_ 1 A=Ay

%= 03—y M |, | (A7)

2. Temperature dependence

Once the values of {c;} and {a;} are obtained from
Egs. (A1)-(A4) and (AS5)-(A7), at each of the tempera-
tures selected, their temperature dependence was fitted by
simple polynomials. For ¢ and c; it is given by

_ 2 3

cir=cpptepBrepBitenB,
_ 2

c3=cyteyBteyp,

with B=¢/kT=1/T*, but ¢, and B, are best fitted with
different polynomials for the LJ and the EXP6 fluids. In
the first case,

co=cootco T*+ce, T** (LY),
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bo=bg+bo T*+by, T**+bg; T*> +bo, T** (LJ),
and, for EXP6,
co=coot+CcoiB+coBitcyB (EXP6),
bo=bgyt+by InB (EXP6) .
The temperature dependence of {«;} is represented by
ay=aptaBtaps,
ap=a;+Aq .
For the LJ fluid, one has that
Ao=Agot A B+ A0B2+ApsB (LY),
Ay =yt ay Bt ayBitayB+a,Bt (LY),
and, for the EXP6 case,
Ao=Agot+ Ay InB (EXP6) ,
Ay =0+, B+aB (EXP6) .

The constants {c;;}, {b;}, {A;], and {a;] in these
equations determine the EOS, and are given in the tables
for the potentials considered here.

APPENDIX B: SW EQUATION OF STATE

The main sections of this paper show that the noncon-
formality of the variable-width SW family is a basic
feature in the construction of TEOS. The SW equation of
state used here [11,12] is based on the high-temperature
expansion of the Helmholtz free energy, following the
Barker-Henderson perturbation theory [40]

asw(p,B,A)=ays(p)+PBa,(p,A)+B%a,(p,A)
+aR (P’ﬁ,x) ’

where B=¢e/kT. The term ayg is the free energy of the
hard-sphere fluid, taken here from the Carnahan-Starling
formula [41]. The mean-field term a, can be written as

01:—417(}L3_1)st(§) ’ (B2)

where 7 is the packing function, yyg(7) is the HS back-
ground distribution function, and £ is the mean-value dis-
tance 1 =£=A (see below). For yyq(7), one uses the ex-
pression due to Boublik [42],

(B1)

(B3)
The

J’Hs(")zeXP(ﬂo+#1§+#2§2+/~‘3§3) s

whose coefficients p;(7) are given in Ref. [42].

TABLE VI. Constants for the mean-field SW equation of
state.

m Som Eim Em

0 0.773 853 —5.589 61 1.216473
1 —0.157937 2.045 30 —2.034727
2 0.499 370 1.238574
3 —0.115220 —0.425229
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mean-value distance £ is given by
E=&tEmt+Eam,
Eo=6ootEih T A +EpA
&= %
Er=EptEnAHEnA +EuA

where the constants &;; are given in Table VI. These

values of &, substituted in Eqgs. (B2) and (B3) reproduce
very accurately the simulation data for a;.

(2—Mexp(£10+E1A)
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The second order term in (B1) incorporates the exact
contributions from the second and third virial coefficients
into the macroscopic compressibility approximation. It
has the form already used in SW EOS already published
[10,12]. The last or residual term in (B1) is an approxi-
mation of

ar= 3 B'a,(p,A),
n=3
which also has the correct second virial coefficient, and is

a good approximation of the third virial coefficient
[10,12].
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